Lesson	Summary of Content	Text book	Time
		reference	
1	Meet the elements: Describe what an element is and use	pg 24-26	Dec
	specific examples in your definitions and diagrams. Answer the		
	fact-recall and practice application questions in full sentences.		
	Check your answers on pg 255.		
2	Compounds: Describe what a compound is and how they form.	pg 29-30	
	Describe the properties of compounds. Include labelled		
	diagrams in your work. Answer the fact-recall and practice		
	application questions in full sentences. Check your answers on		
	pg 255.		
3	Mixtures and separation: Describe what a mixture is and the	pg 34	
	properties of a mixture. Draw labelled diagrams of filtration (pg	pg 38	
	37); evaporation and crystallisation (pg 38) and distillation (pg	pg 40	
	40). Describe how each of these separation techniques work.		
4	Required practical activity 6: Chromatography	pg 35-36	
	Write a plan or method on how to carry out paper		
	chromatography (pg 35). Draw a labelled diagram of paper		
	chromatography. Answer the fact-recall and practice application		
	questions in full sentences. Check your answers on pg 256.		
5	Atoms and sub-atomic particles: Draw and label a diagram of the	pg 22-23	
	nuclear model of the atom (pg 22). Copy the table on the		
	bottom of pg 22. Describe and explain why the overall electrical		
	Answer the fact recall and practice application questions in full		
	sentences. Check your answers on ng 255		
6	Arranging electrons: Describe how the electrons are arranged in	ng 44-45	lan
U	the shells of atoms: include labelled diagrams in your work	pg ++-+5	3011
	Answer the fact-recall and practice application questions in full		
	sentences. Check your answers on pg 256.		
7	History of the atomic model: Describe what the plum pudding	Pg 42-43	
	model of the atom is; the nuclear model of the atom and the	U	
	Bohr model of the atom. Draw a labelled diagram for each		
	model. Answer the fact-recall and practice application questions		
	in full sentences. Check your answers on pg 256.		
8	Isotopes: Describe what an isotope is and use a specific example	pg 27-28	
	in your description and a labelled diagram. Define what relative		
	atomic mass is and write out the formula to show how to		
	calculate it. Answer the fact-recall and practice application		
	questions in full sentences. Check your answers on pg 255.		
9	Atomic mass and relative formula mass: Describe how to	pg 104-	
	calculate relative formula mass, make notes on the worked	105	
	example on pg 104. Describe how to calculate percentage mass		
	by copying out the formula and a worked example on pg 104.		
	Answer the fact-recall and practice application questions in full		
	sentences. Check your answers on pg 262.		
10	Review of learning: Complete revision of the previous nine	pg 22-45	
	lessons by making mind maps; revision cards; revision poster.	pg 46-47	
14	Use the checklist on pg 46-47 to identify the topics.	77 48 40	
11	Practice and application of learning: Complete specimen exam	pg 48-49	
	questions in full sentences. Check your answers on pg 256-257		

12	Balancing equations: Describe how chemical word equations	pg 31-33	Feb	
	should be written and give an example. Describe chemical			
	symbol equations should be written and give an example. Write			
	out the method for balancing equations and read through the			
	worked examples. Answer the fact-recall and practice application			
	questions. Check your answers on pg 255.			
13	Mendeleev's dream: Describe how elements were arranged in	pg 50-51		
and	the early periodic table and state some of the problems that	pg 52-53		
14	scientists came up against. Describe how Mendeleev's periodic	pg 64-65		
	table was different to the early periodic tables. State the things			
	that Mendeleev did to make his periodic table make sense.			
	Answer the fact-recall questions. Check your answers on pg 257.			
	Read pages 52-53 and answer the fact-recall and practice			
	application questions. Check your answers on pg 257. Describe			
	the properties of the noble gases. Describe the trends down the			
	group (pg 64). Answer the fact-recall and practice application			
	questions. Check your answers on pg 258.			
4-				
15	Metals, non-metals and noble gases: Describe where the metals	pg 54-55		
	and non-metals are found in the periodic table. Describe the			
	electronic structure of metals and non-metals. Make a table of			
	the similarities and differences of the physical properties of			
	metals and non-metals. Answer the fact-recall questions. Check			
	your answers on pg 257.	56.60		
16	Ferocious metals (Group 1): Describe the properties of the alkali	pg 56-60		
	metals. Describe the trends of reactivity, melting point and			
	relative mass down the group. Describe how the alkali metals			
	react with water; include a drawing in your answer (pg 58).			
	Answer the fact-recail and practice application questions. Check			
47	your answers on pg 257.			
17	Ferocious non-metals (Group 7): Describe the properties of the	pg 61-63		
	nalogens. Describe the trends of reactivity, meiting point and			
	relative mass down the group. Describe now the halogens react			
	in displacement reactions. Answer the fact-recail and practice			
10	application questions. Check your answers on pg 258.		N 4 a m	
18	wietais and oxygen: Describe what oxidation is and include an	pg 137	war	
	equation in your description (pg 137). Describe how metal oxides	pg 132		
	react with actus (pg 150). Describe how you would make a			
	soluble sait from an insoluble base; include a diagram in your			
10	Answer (pg 152).	ng 124		
19	metals and acids (ng 124). Describe how different metals react	126 pg		
	metals and across (pg 154). Describe now unreferit metals react	120		
	with actus, depending of their reactivity; include a drawing in			
	your answer. Describe which saits are formed when metals react			
	with university actors. Answer the fact-recall question and practice			
20	application questions 1-4. Check your answers on pg 265.	ng 125		
20	Displacement reactions: Describe what a displacement reaction	pg 135-		
	is, include an equation is your description (bottom of pg 135 and	130		
	pg 150). Answer the fact-recall and practice application			
-	questions. Check your answers on pg 265.	50.05		
21	Review of learning: Complete revision of the previous eight	pg 50-65		

	is and the factors that affect it. Describe what collision theory is	168	May
33	Introduction to rates of reaction: Describe what rate of reaction	pg 164-	Apr and
	232 in full sentences. Check your answers on pg 266 and 274.		
	questions 5.1-5.5 and 6.1-6.5 on pg 151 and 1.1-1.3 and 2.1 on pg	pg 232	
32	Practice and application of learning: Complete specimen exam	pg 151	
		222	
	Use the checklists on pg 149 and 230 to identify the topics.	pg 218-	
	lessons by making mind maps; revision cards; revision poster.	147	
31	Review of learning: Complete revision of the previous eight	pg 141-	
	Check your answers on pg 274.		
	how glass is recycled. Answer the fact-recall questions on pg 222.		
	table to summarise the reasons why we should recycle. Describe	220	
30	Recycling: Describe what it means to reuse and recycle. Make a	pg 218-	
	application questions on pg 221. Check your answers on pg 274.		
	what bioleaching, phytomining are. Answer the fact-recall and		
	chemistry can be made more sustainable. <i>Higher tier:</i> Describe		
	what sustainable develop is. Describe the ways in which		
	and finite resources are and give an example of each. Describe	220	
29	Resources and sustainability: Describe what natural, renewable	pg 218-	
	answers on pg 266.		
	work. Answer the fact-recall questions on pg 144. Check your		
	extraction using electrolysis; include a labelled diagram in your		
28	Aluminum extraction: Describe the whole process of aluminium	pg 144	
	and 147. Check your answers on pg 266.		
	read. Answer the fact-recall and application questions on pg 143		
	142 and 145-146 and make key fact bullet point notes as you	146	
27	Electrolysis consolidation and practice: Read through pages 141-	pg 141-	
	include a labelled diagram in your work.		
	investigation into electrolysis. Write a full experimental plan and		
26	Electrolysis investigation: Describe how to carry out an	pg 146	Apr
	recall questions on pg 141. Check your answers on pg 266.		
	it works; include a diagram in your description. Answer the fact-		
25	Electrolysis-the basics: Describe what electrolysis is and the how	pg 141	
	pg 265-266.		
	recall and practice application questions. Check your answers on		
	reactions; include equations in your description. Answer the fact-		
	is. Describe how displacement reaction can be classed as redox		
	reduction is in terms of electrons. Describe what a redox reaction	140	
24	Oxidation and reduction (HT): Describe what oxidation and	pg 139-	
	questions. Check your answers on pg 265.		
	using carbon. Answer the fact-recall and practice application		
	how this can be used to show which metals can be extracted		
	Copy the diagram of the reactivity series on pg 138 and describe		
	their ores, using carbon; include an equation in your description.	136	
23	Extraction of metals: Describe how metals are extracted from	pg 135-	
	266.	151	
	questions in full sentences. Check your answers on pg 258 and	pg 150-	
22	Practice and application of learning: Complete specimen exam	pg 68-69	
		pg 148	
	Use the checklists on pg 66-67 and 148 to identify the topics.	136	
	lessons by making mind maps: revision cards: revision poster.	pg 130-	

	and the ways in which the frequency and energy of collisions can		
	be increased; include diagrams in your work.		
34	Collecting a gas over water: Describe the two ways in which you	pg 236	
	can collect gas produced during an experiment. Include diagrams	pg 235	
	in your work.	pg 170	
35	Calculating a rate of reaction: Write the formula for calculating	pg 168	
	the rate of a reaction (pg 168). Describe how graphs can be used	pg 171-	
	to show and compare the rate of reactions (pg 171-172). Answer	172	
	the application questions 1-4 on pg 174-175. Check your answers	pg 174-	
	on pg 274. Higher tier: Tangents: Describe how tangents can be	175	
	used to calculate a rate of reaction from a graph, include		
	diagrams in your work. Answer the application question 5 on pg		
	175. Check your answers on pg 274.		
36	Concentration and rate of reaction: Describe and explain how	pg 165	
and	concentration or pressure (gases) affects rate; include a diagram	pg 176-	
37	in your work (pg 165). Write a full experimental plan to describe	177	
	how you would investigate how the concentration of hydrochloric		
	acid affects the rate of its reaction with magnesium metal.		
	Describe the reaction between sodium thiosulphate and		
	hydrochloric acid; include an equation in your work. Write a plan		
	to investigate into how the concentration of either the acid or the		
	sodium thiosulphate solution affects the rate of a chemical		
	reaction (black cross method); include a diagram in your work.		
	Answer the fact-recall and application questions on pg 177.		
	Check your answers on pg 269.		
38	Surface area and rate of reaction: Describe and explain how the	pg 165	June
	surface area of solids affects rate; include a diagram in your work	pg 169	
	(pg 165). Answer the application question on pg 166. Check your	pg 176-	
	different forms of calcium carbonate (marble ching, crushed	1//	
	marble chips and powder chalk) affect the rate of reaction with		
	hydrochloric acid Include a diagram of the apparatus in your		
	work (see ng 169 for ideas)		
30	Temperature and rate of reaction: Describe and evolain how the	ng 165	
and	temperature of a reaction affects rate: include a diagram in your	ng 176-	
40	work (ng 165) Read through ng 176 and using either the reaction	177	
-10	between magnesium metal and hydrochloric acid or sodium	177	
	thiosulphate and hydrochloric acid as a guide: write a plan of a		
	full experiment to investigate how changing temperature affects		
	rate of reaction.		
41	Catalysts: Describe what a catalyst is and include a reaction	pg 166-	
	profile diagram in your work. Describe and explain why enzymes	167	
	can be described as catalysts. Write a plan for an experiment to		
	investigate how changing the mass of the catalyst, manganese		
	dioxide, affects rate of oxygen release from hydrogen peroxide,		
	when the two are mixed. (See pg 169 or 170 for extra help.		
42	Exothermic and endothermic reactions: Describe what energy	pg 152-	
	transfer is. Describe and give an example of an exothermic and	153	
	an endothermic reaction. Create a mind map or poster of the		
	different uses of exothermic and endothermic reactions.		

	temperature changes which take place when an acid is	154	
	neutralised by an alkali; include a labelled diagram in your work.		
	Answer the fact-recall questions on pg 154. Check your answers		
	on pg 267.		
44	Activation energy and energy profiles: Describe what a reaction	pg 155-	July
	profile is. Draw reaction profiles for an exothermic and an	155	
	endothermic reaction. Describe what activation energy is and		
	label it on the energy profiles that you have drawn. Answer the		
	fact-recall and application questions on pg 156. Check your		
	answers on pg 267.		
45	Calculating energy changes in reactions: State the units of	pg 158-	
and	energy and describe the energy changes involved in bond	160	
46	breaking and bond breaking. Explain how the overall energy		
	change of a reaction can be determined. Answer the fact-recall		
	questions on pg 160. Check your answers on pg 267. <i>Higher tier:</i>		
	Calculating bond energy changes: Write the formula for		
	calculating energy change (green box on pg 158) Read and work		
	through and answer the application questions on pg 160. Check		
	your answers on pg 267.		
47	Review of learning: Complete revision of the previous eight	pg 178	
	lessons by making mind maps; revision cards; revision poster.	pg 164-	
	Use the checklists on pg 178 and pg 161 to identify the topics.	177	
48	Practice and application of learning: Complete specimen exam	pg 179-	
	questions on pg 179-180. Check your answers on pg 269-270.	180	
49	Reversible reactions and dynamic equilibrium: Describe what a	pg 181-	
	reversible reaction is. Describe what equilibrium is. Describe	183	
	now energy is transferred in reversible reactions; include a		
	labelled drawing in your work. Answer the fact-recall and		
	application questions on pg 183. Check your answers on pg 270.	405	
50	Higher Lier: Le Chatelier's principle and changing conditions:	pg 185-	
	Describe Le Chateller's principle. Describe and explain how	186	
	changing temperature, pressure and concentration. Answer the		
	fact-recall and application questions on pg 185-186. Check your		
	answers on pg 270.		